Cost-Effectiveness of Regular Surveillance Versus Endoscopy at Need for Patients With Barrett's Esophagus: Economic Evaluation Alongside the Barrett's Oesophagus Surveillance Study (BOSS) Randomized Controlled Trial

Manuela Deidda,^{1,*} **Oliver Old**,^{2,*} Janusz Jankowski,³ Stephen Attwood,⁴ Clive Stokes,² Catherine Kendall,² Cathryn Rasdell,² Alex Zimmermann,⁵ Sofia Massa,⁵ Sharon Love,⁵ Scott Sanders,⁶ Julie Hapeshi,² Chris Foy,² **Andrew Briggs**,^{7,§} **Hugh Barr**,^{2,§} and **Paul Moayyedi**,^{8,§} on behalf of the BOSS Trial team

¹Health Economics and Health Technology Assessment, School of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom; ²Gloucestershire Hospitals NHS Foundation Trust, Gloucester, United Kingdom; ³Institute of Clinical Trials & Methodology, University College London, London, United Kingdom; ⁴Department of Health Services Research, Durham University, Durham, United Kingdom; ⁵Centre for Statistics in Medicine, University of Oxford, Botnar Research Centre, Oxford, United Kingdom; ⁶University Hospitals Coventry and Warwickshire, University of Warwick, Warwickshire, United Kingdom; ⁷London School of Hygiene and Tropical Medicine, London, United Kingdom; and ⁸Division of Gastroenterology, McMaster University Medical Centre, Hamilton, Ontario, Canada

BACKGROUND & AIMS: The Barrett's Oesophagus Surveillance Study (BOSS) was the first randomized study of surveillance. This study reports the costs and quality of life outcomes from the BOSS trial and models the outcomes and cost-effectiveness of surveillance beyond the follow-up period of the BOSS study. This trial showed similar stages and rates of esophageal cancer in both arms, but the regular surveillance arm did identify more high-grade dysplasia after a median of 12.8 years follow-up. METHODS: We used a decision tree model based on results from BOSS to conduct a cost-effectiveness analysis of costs and quality-adjusted life years (QALYs). A Markov model was used to extrapolate costs and outcomes over a further 10 years after the trial had ended, representing a 22.8-year time horizon. The proportion with high-grade dysplasia and QALYs was derived from the randomized trial. RESULTS: The total costs associated with 2-yearly surveillance was \$5309 vs \$3182 in the at-need arm. Total QALYs in the 2-yearly endoscopy arm were 8.647 compared with 8.629 in the at-need arm. Compared with atneed endoscopy, 2-yearly surveillance costs \$115,563/QALY gained. In the sensitivity analyses around assumptions on the proportion of high-grade dysplasia that is undetected in the atneed endoscopy arm, surveillance had an incremental cost effectiveness ratio of \$94,513/QALY for the best-case and \$146,272/QALY for the worst-case scenario. **CONCLUSION**: Barrett's esophagus surveillance every 2 to 3 years is unlikely to be a cost-effective strategy. Guidelines should take this into account when deciding surveillance intervals

Keywords: Quality-Adjusted Life Years; High-Grade Dysplasia; Esophageal Adenocarcinoma; Markov Model; Cost-effectiveness Acceptability Curve.

M ost guidelines in the developed world recommend surveillance of Barrett's esophagus (BE) every 3 to 5 years. ¹⁻³ The rationale for guidelines is that BE is a major risk factor for esophageal adenocarcinoma (EAC), which has

a high mortality when detected symptomatically. Patients with BE have a much greater risk of developing EAC compared with the general population,⁴ and screening BE can detect dysplasia before EAC develops, when it is amenable to ablation or endoscopic mucosal resection.⁵ Even if EAC has already developed, regular surveillance may detect the cancer early when surgery can result in a substantially higher survival.⁶ The risk of progression to cancer in BE is low,⁷ so the question is whether surveillance is cost-effective given the ever-increasing cost of treating gastrointestinal disease and the need to use scarce resources wisely.

Most health economic models suggest BE surveillance is cost-effective, $^{8-11}$ although there are exceptions. 12,13 The main reason for discrepancies in assessments of cost-effectiveness of BE surveillance are differing assumptions around risk of progression to cancer and the effectiveness of surveillance. 13 These inputs to the models rely on observational data. The rise in large electronic databases allows for more accurate determination of the annual risk of progression, which most agree is $<\!0.4\%$ per year. 14 The effectiveness of surveillance, however, is uncertain because observational studies tend to overestimate due to confounding and bias. 15

We conducted the first long-term randomized controlled trial (RCT) assessing surveillance vs at-need endoscopy with

Abbreviations used in this paper: BE, Barrett's esophagus; BOSS, Barrett's Oesophagus Surveillance Study; EAC, esophageal adenocarcinoma; EQ-5D-3L, EuroQoL 5-Dimension 3-Level; HGD, high-grade dysplasia; LGD, low-grade dysplasia; QALYs, quality-adjusted life years; RCT, randomized controlled trial; WTP, willingness-to-pay.

© 2025 The Author(s). Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

0016-5085

https://doi.org/10.1053/j.gastro.2025.04.026

^{*}Authors share co-first authorship; §Authors share co-senior authorship.

2

WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Surveillance for Barrett's esophagus is recommended every 3 to 5 years. A randomized trial showed there was no difference in the incidence of esophageal adenocarcinoma or the stage detected between regular surveillance or at-need endoscopy.

NEW FINDINGS

A modeling exercise was conducted to determine whether surveillance would be cost-effective over a further 10 years of follow-up. There was a modest gain in quality of life, but this was not cost-effective.

LIMITATIONS

Although data from the randomized trial were mainly used, literature sources were used for some assumptions. The trial did have significant contamination that would bias results toward the null.

CLINICAL RESEARCH RELEVANCE

These data suggest surveillance every 2 to 3 years is not cost-effective, and future guidelines need to take this into account when recommending surveillance intervals for Barrett's esophagus.

BASIC RESEARCH RELEVANCE

Further work needs to be done on animal models and biomarkers to better risk stratify those who need more frequent vs less frequent surveillance because the current strategy is unlikely to be cost-effective.

follow-up for 10 to 15 years, the Barrett's Oesophagus Surveillance Study (BOSS trial). ¹⁶ This trial reported no difference in all-cause or EAC mortality. ¹⁷ There was a difference in high-grade dysplasia (HGD) detected, with more patients having this detected in the regular surveillance arm compared with the "at-need" arm of the trial. It is possible that ablation of HGD would result in lower EAC rates in the surveillance arm beyond the 10- to 15-year follow-up of the trial and that this could result in the surveillance strategy being cost-effective over a longer time horizon.

Additionally, although the difference in overall stage of cancers detected in the 2 arms was not significant, there was a trend toward a higher number of T1a cancers in the surveillance arm. This trial also has the advantage that it determined the quality-adjusted life years (QALYs) of individuals in various states from nondysplastic BE to HGD and EAC.

The RCT showed no difference in EAC rates or stage between the surveillance and at-need arm. The at-need arm had fewer endoscopies, and therefore, over the medial 12.8 years of the trial, the surveillance arm had greater costs with the same outcome. Cost minimization would suggest at need would be the cheaper option; however, a post hoc analysis to evaluate the detection of dysplasia found 114 of 1733 (7%) in the surveillance group compared with 48 of 1719 (3%) in the at-need group had low-grade dysplasia (LGD) as the most advanced grade of dysplasia detected during the trial. Similarly, 47 of 1733 (3%) in the surveillance group compared with 19 of 1719 (1%) in the at-need

group had HGD as the most advanced grade of dysplasia detected during the trial. It is possible that if we had evaluated patients for longer, we would have found a lower incidence of EAC in the surveillance group due to ablation of HGD. We have therefore modeled the RCT data going beyond the duration of the trial to evaluate whether BE surveillance is likely to be cost-effective.

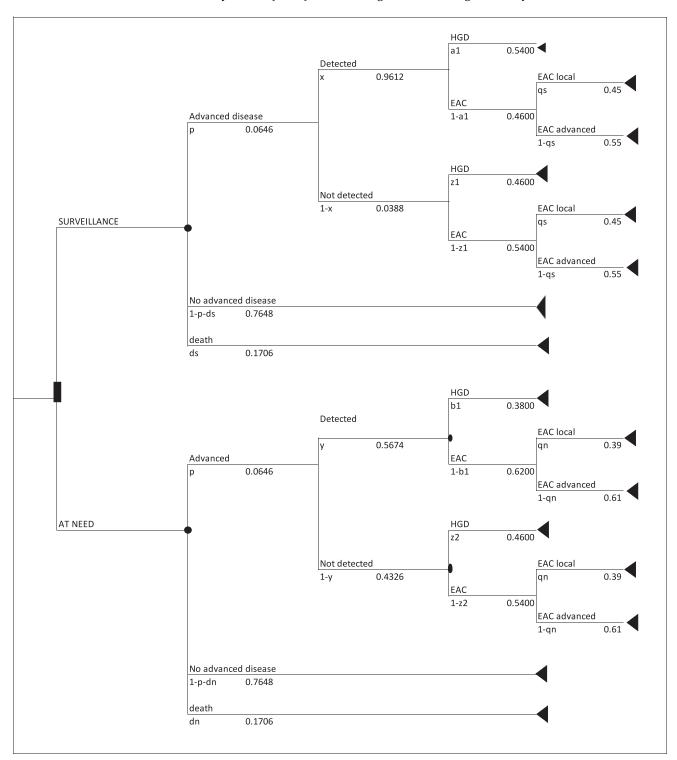
Methods

The methods and results of the BOSS RCT have been reported elsewhere. ^{16,17} Briefly, patients aged >18 years with at least 1 cm of BE with no HGD were randomized to surveillance endoscopy every 2 years or endoscopy only if they developed symptoms such as dysphagia, weight loss, or worsening upper gastrointestinal symptoms. QALYs were measured using the EuroQoL 5-Dimension 3-Level (EQ-5D-3L) questionnaire ¹⁸ every 2 years until the end of the trial. Follow-up was at least 10 years. The main outcome was all cause mortality, and secondary outcomes included cancer-specific mortality, stage of EAC, and frequency of endoscopy.

The trial randomized 1733 patients to endoscopy every 2 years and 1719 to at-need endoscopy, with a mean follow-up of 12.8 years for the primary end point. There was no difference in all-cause mortality (19.2% in the surveillance arm and 20.7% in the at-need arm) or EAC mortality (7% in the surveillance arm and 5% in the at-need arm). As expected, the difference in endoscopy rates between the groups was significant: 93% of the surveillance arm had at least 1 endoscopy compared with 59% in the surveillance arm

Model Development

We conducted a cost-effectiveness analysis using a decision tree model, comparing costs and QALYs associated with 2-yearly surveillance vs endoscopy at need. The decision tree represents the progression of BE to LGD, more severe disease (HGD and EAC), and associated costs and QALYs, over the BOSS 10-year time horizon, in both arms (because all participants in the BOSS trial had at least 10 years of follow-up). The long-term cost and QALYs associated with detected HGD and EAC were calculated using a Markov-type decision analytic model that extrapolates costs and outcomes associated with the detection and treatment of HGD and EAC over the following 10 years after the trial was completed.


The model draws on the difference between arms in the number of HGDs and EACs detected within the 10 years of the BOSS trial, exploring whether early detection of HGD and EAC prevents progression to advanced-stage cancer and leads to significant differences in costs and quality of life. The analysis was conducted from a United Kingdom National Health Service and Personal Social Service perspective. We have calculated EQ-5D utility values associated to each state (LGD, HGD, EAC) from the BOSS trial. Participants with HGD completed the EQ-5D in the trial before being aware of the diagnosis and before any treatment, and the QALY for this group was slightly lower than those with nondysplastic BE. We used this value in the model, even if the participant was not aware of the diagnosis, to mirror results of the trial as much as possible but modeling them a further 10 years.

In line with National Institute for Health and Care Excellence guidance, costs and benefits are discounted at 3.5% per year. Costs are based on the 2021/2022 price level or adjusted accordingly using national indices. Costs were translated from Great British pounds to United States dollars using the purchasing power parity (PPP) conversion factor. The decision tree and the Markov model were developed using Microsoft Excel. A Health Economics Analysis Plan (HEAP) was

developed and is available upon request. Parameters distributions were chosen following standard guidance. 21

Decision Tree

The BOSS decision tree (Figure 1) is structured with 2-yearly endoscopy and endoscopy at need as the 2 competing strategies in the management of patients with BE. The model

Figure 1. BOSS decision tree. Decision tree of 2-yearly surveillance endoscopy (*upper branch*) and endoscopy at need (*lower branch*) for patients with BE. No advanced disease indicates metaplasia (M) or LGD. (See Table 1 for probabilities.)

Deidda et al Gastroenterology Vol. ■, Iss. ■

represents the progression of BOSS patients within the trial period (ie, patients with BE diagnosis, with an average age of 63 years), with results taken from the BOSS study. At the end of the 10 years, patients can be categorized as having developed an advanced disease state (HGD or EAC), no disease (metaplasia or LGD), or died.

The 2 main branches on the left of the tree represent the trial arms, whereas the branches on the right side represent the events associated with the progression of BE. All branches in the tree are assigned a probability value, and each stage of BE progression is associated with QALYs and costs. Expected costs and QALYs are calculated as weighted averages of pathway probabilities and cost and QALY.

Table 1 summarizes the probability parameters used in the decision tree and the assumptions made. Patients are randomized to surveillance or the at-need arm with equal probability. We assume that the population prevalence of HGD and EAC, p, by the end of the trial period, is equal to the prevalence detected in the surveillance arm. We assumed that 95% of EAC during the trial would be detected by endoscopy²² (those in the at-need arm were offered an exit endoscopy) and so used the prevalence of EAC from trial data.

We used the death probability at 10 years estimated from the Kaplan-Meier analysis in the BOSS trial to model the death rate in the surveillance and at-need arm (d_s and d_n). Considering the BOSS trial result showing no significant difference in survival between arms, we assume these are equal. The x and y represent the proportion of detected advanced diseases (HGD+EAC) in the surveillance and in the at-need arm, respectively, over the expected number of events.

The proportion of HGD over the total of detected and undetected EAC + HGD is indicated with parameters a_1 and z_1 (surveillance arm) and b_1 and z_2 (at-need arm), with their complement representing the proportion of EAC. Specifically, b_1 has been calculated as the number of HGD over the total number

of HGD and EAC detected in at-need arm. We assume that z_1 (proportion of undetected HGD) equals the proportion of HGD over the total HGD + EAC detected in the surveillance arm. We assume that the value of z_2 is the midpoint between a_1 and b_1 and use a_1 and b_1 in a sensitivity analysis. The proportion of local cancers has been calculated from the BOSS trial and indicated with parameters q_s (surveillance arm) and q_n (at-need arm).

A table with the number of events (metaplasia, LGD, HGD, EAC) by trial arm as well details on calculations of the model parameters are included in Supplementary Table 1 and Supplementary Table 2. Costs and QALYs associated with detection, treatment, and progression of the HGD and EAC states have been estimated using a Markov decision analytic model, as described in the following section. Results are expressed as an incremental cost-effectiveness ratio which is the difference in cost divided by the difference in outcomes between the 2-yearly surveillance strategy and the at-need scenario.

Markov Model

The Markov model (Figure 2) projects progression of HGD and early EAC into treatment, advanced EAC, early EAC treatment, and associated mortality, quality-adjusted life expectancy, and costs. The model simulates a cohort of patients after 10 years in the BOSS trial (aged 73 at the beginning of the model) and includes 5 mutually exclusive states (HGD; successful endoscopic treatment for HGD; EAC local; successful treatment for EAC local, EAC advanced) and death (an absorbing state). All members of the cohort start in HGD or EAC local stage. With each cycle of the model, patients have an annual probability of remaining in the same state or moving to another state.

Health-related quality of life associated with HGD and EAC states was measured within the trial using EQ-5D-3L. Information about quality of life was collected at baseline for all, at endoscopy for all (unless the endoscopy is only 3 months from the previous endoscopy), and then every 2 years for

Table 1. Probabilities Used in the Barrett's Oesophagus Surveillance Study Decision Tree

Parameter	ameter Description		Source and assumptions	
Probabilities				
р	Prevalence (HGD + EAC in BE population)	0.06	BOSS trial—assume prevalence is EAC+HGD in surveillance arm + 5% missed events	
x	Probability (detection HGD $+$ EAC surveillance arm)	0.96	Number of cases detected: $HGD + EAC$, $BOSS$ trial (surveillance arm)	
у	Probability (detection HGD $+$ EAC at-need arm)	0.57	Number of cases detected: $HGD + EAC$, $BOSS$ trial (at-need arm)	
a ₁	Probability (HGD detection surveillance arm)	0.54	Calculations from BOSS trial	
1-a ₁	Probability (EAC Detection SURVEILLANCE ARM)	0.46	Calculations from BOSS trial	
Z ₁	Probability (HGD no detection)	0.46	Assume midpoint between a ₁ and b ₁ . Assume it's the same between arms	
1-z ₁	Probability (EAC no Detection)	0.54	Assume midpoint between a ₁ and b ₁ . Assume it's the same between arms	
b ₁	Probability (HGD Detection at-need arm)	0.38	Calculations from BOSS trial	
1-b ₁	Probability (EAC Detection at-need arm)	0.62	Calculations from BOSS trial	
d _s	Probability of death in the surveillance arm	0.17	Calculations from BOSS trial	
d _n	Probability of death in the at-need arm	0.17	Calculations from BOSS trial	
q _s	Proportion of EAC local/total EAC, surveillance arm	0.45	Calculations from BOSS trial	
1-q _s	Proportion of EAC advanced/total EAC, surveillance arm	0.55	Calculations from BOSS trial	
q _n	Proportion of EAC local/total EAC, at-need arm	0.39	Calculations from BOSS trial	
1-q _n	Proportion of EAC advanced/total EAC, at-need arm	0.61	Calculations from BOSS trial	

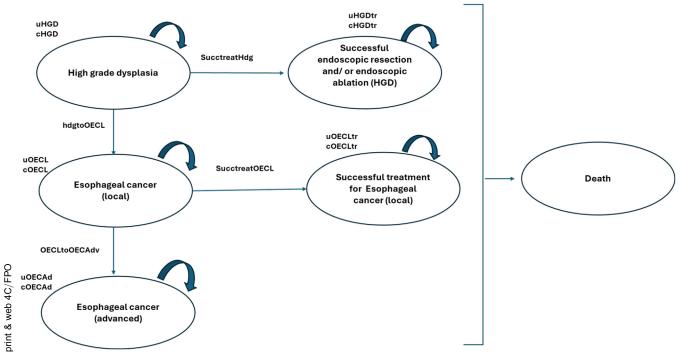


Figure 2. Markov model. cHDG: cost, HDG; cHDGtr: cost, endoscopic treatment for HDG; cOECAd: cost, esophageal adenocarcinoma (advanced); cOECL: cost, esophageal adenocarcinoma (local); cOECLtr: cost, treatment for esophageal adenocarcinoma (local); OECLtoOECAdv: transition probability, esophageal adenocarcinoma (local) to esophageal adenocarcinoma (advanced); SucctreatHdg: transition probability, successful HDG treatment; SucctreatOECL: transition probability, successful treatment for esophageal adenocarcinoma (local); uHDG: utility, HDG; uHDGtr: utility, endoscopic treatment for HDG; uOECAd: utility, esophageal adenocarcinoma (advanced); uOECL: utility, esophageal adenocarcinoma (local); uOECLtr: utility, treatment for esophageal adenocarcinoma (local).

those in the at-need arm if they did not have an endoscopy. Health-related quality of life associated with HGD and local EAC was estimated from the BOSS trial, adjusting by trial arm, age, and sex. The utility associated with HGD successful treatment, as well as the utility associated with EAC advanced, were estimated from secondary literature, because it was not possible to obtain reliable estimates from the BOSS trial data.

The cost of endoscopy, as well as the annual health service cost associated with each of the disease states, was obtained from the National Health Service reference costs²³ and the National Institute for Health and Care Excellence guidelines for EAC and incorporated within the model. Further details on cost calculations and sources are provided in the Supplementary Material and Supplementary Table 3.

In consideration of the low number of events detected in the BOSS trial, estimating transition probabilities between HGD and EAC states using the BOSS trial data was not possible. Annual transition probabilities were thus estimated from secondary literature. The survival probabilities associated with HGD resection/ablation were estimated using the national life-tables by the Office for National Statistics in United Kingdom and corrected by the additional mortality associated with BE. The mortality rate associated with EAC was estimated from the BOSS trial. Because we did not find any difference between the arms in overall survival or cancer-related survival, we used the same mortality in both scenarios. Table 2 lists the model parameters. 9,23–27

Sensitivity Analysis

We performed a deterministic sensitivity analyses to assess the robustness of results to the value of z_1 (ie, proportion of undetected HGD in both arms). With z_1 unknown, we assume this is equal to the midpoint between a_1 and b_1 and relax this assumption (using a_1 and b_1) in a sensitivity analysis.

In addition to the scenario analysis, a probabilistic sensitivity analysis was conducted to account for the uncertainty around the model parameters. A Monte Carlo simulation was run 1000 times to generate random values for each of the input parameters. The uncertainty around the incremental cost-effectiveness pair has been represented in the cost-effectiveness plane. Cost-effectiveness acceptability curves have been shown as well, to represent the probability that 2-yearly surveillance is cost-effective compared with surveillance at need at different willingness-to-pay (WTP) thresholds.

Results

Table 3 summarizes the cost-effectiveness results for the base-case analysis. The total cost associated with 2-yearly surveillance was \$5309 vs \$3182 in the at-need arm. As expected, 2-yearly surveillance is more expensive than the at-need arm (\$1894), in consideration of the difference in the number of endoscopies undertaken in the 2 arms (3.5 surveillance arm; 1.8 at-need arm). Total QALYs in the 2-yearly endoscopy arm were 8.647 compared with 8.629 in

6 Deidda et al Gastroenterology Vol. ■, Iss. ■

Table 2. Markov Model Parameters

Parameter	Mean	SE	Reference
Transition probabilities			
Successful HGD ablation/resection	0.88	0.172	9
Successful EAC local treatment	0.87	0.1	25
Transition HGD to EAC local	0.06	0.008	26
Transition EAC local to EAC advanced	0.14	0.05	27
Increased mortality from BE	1.21	95% CI 1.14-1.30	23
Increased mortality from EAC (advanced)	4.4	1.19	BOSS RCT
Utilities			
HGD	0.76	0.03	BOSS RCT
EAC local	0.74	0.04	BOSS RCT
EAC advanced	0.675	0.032	27
HGD/EAC local treatment (year 1)	0.55	0.002	27
HGD/EAC local treatment (year 2-20)	0.74	0.03	BOSS RCT
Cost (\$)			
HGD	0	0	
HGD treatment year 1	11,075	1439.8	NHS reference costs, NICE ²³
HGD treatment year 2-6	1332	173.2	NHS reference costs, NICE ²³
HGD treatment year 7-20	0	0	NHS reference costs, NICE ²³
EAC local	0	0	NHS reference costs, NICE ²³
EAC local treatment year 1	40,607	5279	NHS reference costs, NICE ²³
EAC local treatment year 2	10,652	1385	NHS reference costs, NICE ²³
EAC local treatment year 3-20	1332	173.2	NHS reference costs, NICE ²³
EAC advanced	11,697	1520	NHS reference costs, NICE ²³
Discount rate			
Discount rate cost	0.035		
Discount rate QALY	0.035		

NHS, National Health Service; NICE, National Institute for Health and Care Excellence; SE, standard error.

the at-need arm, resulting in a small QALYs gain of 0.018. The intermediate outcomes of EAC cases and EAC deaths in both arms are given in Supplementary Table 4. Compared with at-need endoscopy, 2-yearly surveillance costs \$115,563/QALY gained, thus being unlikely to be cost-effective. Indeed, the cost-effectiveness acceptability curve in the base-case analysis (Supplementary Figures 1 and 2), shows the likelihood of 2-yearly surveillance being cost-effective equal to 22% and 52% for a WTP of \$50,000 and \$100,000 WTP threshold values, respectively.

Sensitivity Analysis

Table 4 gives the results related to the sensitivity analysis around the differences in the proportion of HGD detected in the surveillance and at-need arms. In the scenario analysis, we change the assumption that z_1 (ie, the proportion of undetected HGD) is equal to the midpoint between a_1 (proportion of detected HGD in surveillance arm) and b_1 (proportion of detected HGD in at-need arm). Assuming z_1 equal to b_1 (scenario 1), the total cost associated with 2-yearly surveillance was \$5315 vs \$3251 in the

Table 3. Incremental Costs and Incremental Quality-Adjusted Life Years for the Base-Case Analysis

Base-case scenario	Costs	Incremental	95% boot	strapped CI
Biennial surveillance	5,309	2,128	1235	3021
Surveillance at need	3,182			
	QALY	Incremental	95% boot	strapped CI
Biennial surveillance	8.647	0.018	-0.010	0.060
Surveillance at need	8.629			
ICER	115,563		33,563	dominated

CI, confidence interval; ICER, incremental cost-effectiveness ratio.

Table 4. Incremental Costs and Incremental Quality-Adjusted Life Years for the Sensitivity Scenarios

Sensitivity analysis I (z ₁ = 0.38)	Costs	Incremental	95% boo	tstrapped CI
Biennial surveillance	5315	2065	1125	3141
Surveillance at need	3251			
	QALY	Incremental	95% boo	tstrapped CI
Biennial surveillance	8.647	0.022	-0.007	0.055
Surveillance at need	8.625			
ICER	94,513		37,298	Dominated
	Costs	Incremental	95% boo	tstrapped CI
Biennial surveillance	5,304	2,190	1141	3162
Surveillance at need	3,113			
	QALY	Incremental	95% boo	tstrapped CI
Biennial surveillance	8.647	0.015	-0.010	0.056
Surveillance at need	8.632			
ICER	146,272		34,103	Dominated

CI, confidence interval; ICER, incremental cost-effectiveness ratio.

at-need arm. Total QALYs in the 2-yearly endoscopy arm were 8.647 compared with 8.625 in the at-need arm, resulting in a small QALY gain of 0.022. Setting z₁ equal to a₁ (scenario 2), the total cost associated with 2-yearly surveillance was \$5304 vs \$3113 in the at-need arm. Total QALYs in the 2-yearly endoscopy arm were 8.647 compared with 8.632 in the at-need arm, resulting in a small QALY gain of 0.015. Compared with at-need endoscopy, 2-yearly surveillance costs \$94,513/QALY (scenario 1—best case) and \$146,272/QALY (scenario 2—worst case). The cost-effectiveness acceptability curves for the best and worst case are given in Supplementary Figures 3 to 6. Supplementary Figure 7 provides information on which variables lead to most uncertainty in the model.

Discussion

This is the first health economic model of Barrett's surveil-lance based on large-scale RCT data with long-term follow-up. The RCT showed no difference in overall survival or EAC mortality between 2-yearly surveillance and no surveillance with endoscopy only offered at need for symptoms. Given the outcomes were the same between the groups, that the more intensive surveillance arm would not be cost-effective is not surprising. However, HGD was detected twice as often in the surveillance arm, and 10 to 15 years of follow-up may not have been sufficient to capture all the benefit of surveillance. We therefore modeled this and found surveillance was still not likely to be cost-effective after a further 10 years of follow-up, even with optimistic assumptions around the benefit of detecting and treating HGD.

The RCT offered endoscopy every 2 years, whereas most guidelines suggest surveillance every 3 to 5 years. $^{1-3}$ It could

be argued that the trial did not reflect the frequency of surveillance currently recommended. However, the average surveillance interval in the trial was 3 years, and this is what was costed, so this does reflect existing practice. Future guidelines may find this information useful when formulating new surveillance recommendations. The bottom line is that EAC deaths are relatively uncommon, surveillance is imperfect at preventing these rare events, and most patients will die of unrelated causes. Siven this, the cost of more intensive surveillance does not seem justified.

These data have other implications. There is interest in case finding and screening everyone with heartburn over a certain age threshold or focusing on men, or both, to increase the yield.²⁹ This may not be cost-effective if done by endoscopy, but new less-invasive approaches have reasonable accuracy to detect BE and may be cost-effective.³⁰ If surveillance of BE is of uncertain cost-effectiveness, then screening to detect new cases is even less likely to be economically sensible.

This study has several strengths. Many of the transition probabilities are based on randomized trial data and extrapolation to a further 10 years is more likely to be accurate than previous models. We have also used trial-based QALYs data so quality of life gains can be more accurately estimated.

However, there are several weaknesses. The trial was conducted in the United Kingdom, and cost-effectiveness calculations may not apply to other countries. The cost of endoscopy is higher in the United States, so costs are likely to be higher with no additional benefit than observed in this study. We assumed no one had surveillance for the extra 10 years of modeling and looked at the benefit of treating HGD detected in the first 10 to 15 years. It could be argued that we

Deidda et al Gastroenterology Vol. ■, Iss. ■

should model continued surveillance and at-need endoscopy for the extra 10 years in the 2 groups. However, the trial did not show any benefit for those who did not have EAC or HGD at baseline, so this is will not show any benefit for those without these conditions having surveillance for an extra 10 years but will add extra cost. As such, our approach is weighted in favor of surveillance, and yet, the model found this was not likely to be cost-effective.

We also did not evaluate subgroups such as those with extensive BE and men. We did not do this because the randomized trial showed no difference in outcome in these highrisk subgroups. We did have QALY measurements for participants of the trial, but this was completed infrequently in the last few years of the trial related to coronavirus disease 2019, and we do not have robust longer-term data on QALYs. This could diverge in either direction, with patients being made anxious at the approach of their endoscopy and waiting for biopsy results (and anxiety continuing with a LGD diagnosis) or reassured when results are negative.

QALYs early in the trial were the same in both groups, so the most likely scenario is that there is little difference. EAC events are also rare, so 95% confidence intervals around transition probabilities are wide. We also did not model different surveillance intervals because we wanted to adhere as close as possible to the trial data. The trial did have significant contamination, with many of the at-need endoscopy arm having some endoscopy that would bias results toward the null.

Ablation strategies³¹ and advanced imaging techniques⁵ are improving. Currently, whether they will improve HGD and EAC detection and management is uncertain, but this could alter cost-benefit in the future.

Finally, we did not formally validate our model against other cohorts because we were modeling our randomized trial data to evaluate whether regular surveillance could be cost-effective if we hypothetically monitored participants for another 10 years. That the randomized trial may not be reflective of the general population could be argued, but we believe this is unlikely because the rates of EAC seen in the trial were similar to those seen in population-based studies. ^{32,33}

Our model suggests that the cost of surveillance is high and the benefit is modest, even when considering more long-term benefits of treating HGD. Future guidelines should consider this when formulating surveillance recommendations.

Supplementary Material

Note: To access the supplementary material accompanying this article, visit the online version of *Gastroenterology* at www.gastrojournal.org, and at https://doi.org/10.1053/j.gastro.2025.04.026.

References

- Spechler SJ, Sharma P, Souza RF, et al. American Gastroenterology Association medical position statement on the management of Barrett's esophagus. Gastroenterology 2011;140:1083–1091.
- Shaheen NJ, Falk G, Iyer PG, et al. Diagnosis and management of Barrett's esophagus: an updated ACG guideline. Am J Gastroenterol 2022;117:559–587.

- Fitzgerald RC, Di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut 2014;63:7–42.
- 4. Moayyedi P, Burch N, Akhtar-Danesh N, et al. Mortality rates in patients with Barrett's oesophagus. Aliment Pharmacol Ther 2008;27:316–320.
- lyer PG, Chak A. Surveillance in Barrett's esophagus: challenges, progress and possibilities. Gastroenterology 2023;164:707–718.
- Monig S, Chevallay, Niclauss N, et al. Early esophageal cancer: the significance of surgery, endoscopy, and chemoradiation. Ann N Y Acad Sci 2018;1434:115–123.
- Whitson MJ, Falk GW. Predictors of progression of high-grade dysplasia or adenocarcinoma in Barrett's esophagus. Gastroenterol Clin North Am 2015;44: 299–315.
- Sonnenberg A, Soni A, Sampliner R. Medical decision analysis of endoscopic surveillance of Barrett's oesophagus to prevent oesophageal adenocarcinoma. Aliment Pharmacol Ther 2002;16:41–50.
- 9. Kastelein F, van Olphen S, Steyerberg E, et al. Surveillance in patients with long-segment Barrett's oesophagus: a cost-effectiveness analysis. Gut 2015;64:864–871.
- Inadomi JM, Sampliner R, Lagergren J, et al. Screening and surveillance for Barrett's esophagus in high-risk groups: a cost-utility analysis. Ann Intern Med 2003;138:176–186.
- Gerson LB, Groeneveld PW, Triadafilopoulos G. Costeffectiveness model of endoscopic screening and surveillance in patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol 2004;2:868–879.
- Gordon LG, Mayne GC, Hirst NG, et al. Cost-effectiveness of endoscopic surveillance of non-dysplastic Barrett's esophagus. Gastrointest Endosc 2014;79:242–256.
- Somerville M, Garside R, Pitt M, Stein K. Surveillance of Barrett's oesophagus: is it worthwhile? Eur J Cancer 2008;44:588–599.
- Sharma P, Falk GW, Weston AP, et al. Dysplasia and cancer in a large multicenter cohort of patients with Barrett's esophagus. Clin Gastroenterol Hepatol 2006;4:566–572.
- Nguyen VT, Engleton M, Davison M, et al. Risk of bias in observational studies using routinely collected data of comparative effectiveness research: a meta-research study. BMC Med 2021;19:279.
- Old O, Moayyedi P, Love S, et al. Barrett's Oesophagus Surveillance versus endoscopy at need Study (BOSS): protocol and analysis plan for a multicentre randomized controlled trial. J Med Screen 2015;22:158–164.
- Old O, Jankowski J, Attwood S, et al. Barrett's Oesophagus Surveillance versus endoscopy at need Study (BOSS): a randomized controlled trial. Gastroenterology. Published online April 1, 2025. https://doi.org/ 10.1053/j.gastro.2025.03.021.2024.
- EuroQol Research Foundation. EQ-5D-3L User Guide. Available at: https://euroqol-domain.ams3.digitaloceanspaces. com/wp-content/uploads/2025/01/08035110/EQ-5D-3LUserguide-23-07.pdf. Accessed November 29, 2024.
- National Institute for Health and Care Excellence (NICE).
 NICE Health Technology Evaluations: the Manual 2022.
 Available at: https://www.nice.org.uk/process/pmg36/documents/html-content.
 Accessed November 29, 2024.

2025

- World Bank Group. Purchasing power parity (PPP) GDP (LCU per international \$). Secondary purchasing power parity (PPP) GDP (LCU per international \$) 2024. Available at: https://data.worldbank.org/indicator/PA.NUS. PPP?view=chart. Accessed November 29, 2024.
- Briggs A, Sculpher M, Claxton K. Decision Modelling for Health Economic Evaluation. Oxford University Press, 2006.
- 22. Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc Int Open 2014;2:E46–E50.
- National Health Service. NHS England. 2021/22 National Cost Collection Data Publication. Available at: https:// www.england.nhs.uk/publication/2021-22-national-costcollection-data-publication/. Updated August 14, 2025.
- Solaymani–Dodaran M, Card TR, West J. Cause-specific mortality of people with Barrett's esophagus compared with the general population: a population-based cohort study. Gastroenterology 2013;144:1375–1383.
- Haidry RJ, Lipman G, Banks MR, et al. Comparing outcome of radiofrequency ablation in Barrett's with high grade dysplasia and intramucosal carcinoma: a prospective multicenter UK Registry. Endoscopy 2015;47:980–987.
- Rastogi A, Puli S, El-Serag HB, et al. Incidence of esophageal adenocarcinoma in patients with Barrett's esophagus and high-grade dysplasia: a meta-analysis. Gastrointest Endosc 2008;67:394–398.
- Garside R, Pitt M, Somerville M, et al. Surveillance of Barrett's oesophagus: exploring the uncertainty through systematic review, expert workshop and economic modelling. Health Technol Assess 2006;10:1–142, iii-iv.
- Van Munster SN, Verheij EPD, Ozdemir O, et al. Incidence and prediction of unrelated mortality after successful endoscopic eradication therapy for Barrett's neoplasia. Gastroenterology 2024;166:1058–1068.
- 29. Chandar AK, Low EE, Singer ME, et al. Estimated burden of screening for Barrett's esophagus in the United States. Gastroenterology 2023;165:283–285.
- Swart N, Maroni R, Muldrew B, et al; for the Best 3 Consortium. Economic evaluation of cytosponge-trefoil 3 for Barrett's esophagus: a cost-utility analysis of a randomised controlled trial. eClinicalMedicine 2021;37:100969.
- Rubenstein JH, Sawas T, Wani S, Eluri S, et al. AGA Clinical Practice Guideline on endoscopic eradication therapy of Barrett's esophagus and related neoplasia. Gastroenterology 2024;166:1020–1055.
- 32. Hvid-Jensen F, Pedersen L, Drewes AM, et al. Incidence of adenocarcinoma among patients with Barrett's esophagus. N Engl J Med 2011;365:1375–1383.

 Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett's esophagus patients: results from a large population-based study. J Natl Cancer Inst 2011; 103:1049–1057.

Received November 29, 2024. Accepted April 1, 2025.

Correspondence

Address correspondence to: Paul Moayyedi, MD, PhD, MPH, Division of Gastroenterology, McMaster University Medical Centre, 1200 Main Street West, Health Science Centre 4W8E, Hamilton, Ontario L8N 3Z5, Canada. e-mail: moayyep@mcmaster.ca.

CRediT Authorship Contributions

Manuela Deidda, PhD (Conceptualization: Supporting; Data curation: Lead; Formal analysis: Lead; Validation: Lead; Writing – original draft: Lead; Writing – review & editing: Supporting)

Oliver Old, BMedSc, MBChB, MD, FRCS (Data curation: Lead; Project administration: Lead; Validation: Supporting; Visualization: Supporting; Writing – review & editing: Equal)

Janusz Jankowski, MD, PhD (Conceptualization: Supporting; Funding acquisition: Supporting; Methodology: Equal; Supervision: Supporting; Writing – review & editing: Supporting)

Stephen Attwood, MD (Conceptualization: Supporting; Methodology: Equal; Supervision: Supporting; Writing – review & editing: Supporting)

Clive Stokes, MD (Data curation: Supporting; Supervision: Supporting; Writing – review & editing: Supporting)

Catherine Kendall, MD (Data curation: Supporting; Supervision: Supporting; Writing – review & editing: Supporting)

Cathryn Rasdell, MD (Data curation: Supporting; Supervision: Supporting; Writing – review & editing: Supporting)

Alex Zimmermann, PhD (Formal analysis: Equal; Methodology: Supporting; Project administration: Supporting; Supervision: Supporting; Writing – review & editing: Supporting)

Sofia Massa, MSc (Conceptualization: Supporting; Data curation: Supporting; Formal analysis: Equal; Methodology: Supporting; Validation: Supporting; Writing – review & editing: Supporting)

Sharon Love, MSc (Conceptualization: Supporting; Data curation: Supporting; Formal analysis: Supporting; Investigation: Supporting; Methodology: Supporting; Writing – review & editing: Supporting)

Scott Sanders, MD (Conceptualization: Supporting; Data curation: Supporting; Supervision: Supporting; Writing – review & editing: Supporting) Chris Foy, MD (Supervision: Supporting; Writing – review & editing:

Supporting)
Julie Hapeshi (Conceptualization: Supporting; Methodology: Supporting;

Project administration: Lead; Resources: Supporting; Writing – review & editing: Supporting)

Andrew Briggs, DPhil, MSc, BA (Conceptualization: Lead; Formal analysis: Supporting; Methodology: Lead; Supervision: Lead; Writing – review & editing: Supporting)

Hugh Barr, MD (Conceptualization: Lead; Formal analysis: Supporting; Funding acquisition: Lead; Methodology: Supporting; Supervision: Lead; Writing – review & editing: Supporting)

Paul Moayyedi, MD, PhD, MPH (Formal analysis: Supporting; Funding acquisition: Lead; Methodology: Supporting; Resources: Supporting; Visualization: Lead; Writing – original draft: Equal; Writing – review & editing: Lead)

Conflicts of interest

The authors disclose no conflicts.

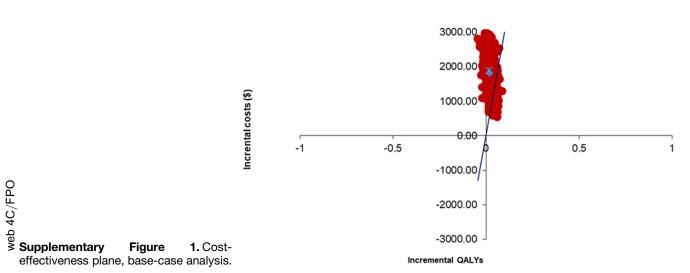
Funding

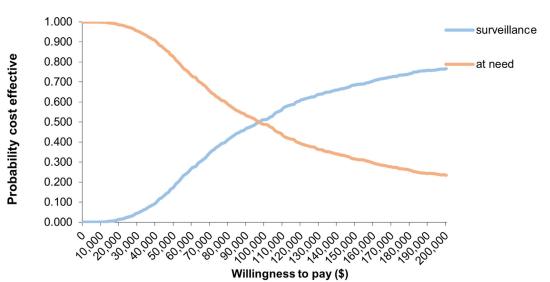
This work was supported by the Health Technology Assessment Programme (HTA), United Kingdom, Project: 05/12/01.

9.e1 Deidda et al

Gastroenterology Vol. ■, Iss. ■

Supplementary Material

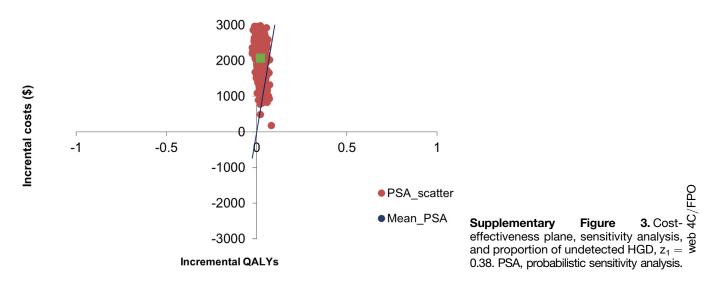

Supplementary Table 1 shows the number of patients diagnosed with metaplasia, LDG, HGD, and EAC in the BOSS full data set. Because there are multiple diagnoses (ie, multiple endoscopies over time) per patient, we keep the most severe diagnosis at first occurrence.

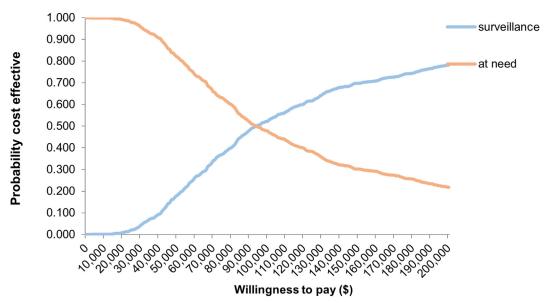

Assuming an underlying prevalence of EAC+HGD is equal to 6.5%, the rate of detection of EAC+HGD is 96% in the surveillance arm and 57% in the at-need arm. When considering HGD and EAC separately, 2-year surveillance is detecting 96% of HGD and 96% of EAC, compared with endoscopy at need (77% EAC and 40% HGD) (Supplementary Table 2).

Following standard guidelines, we assumed that patients with HGD will have endoscopies approximately every 3 months for 12 months while having treatment (usually 3–4 treatment endoscopies with radiofrequency ablation/endoscopic mucosal resection), then stay on

more frequent surveillance (6 months), then every 12 months for the next 5 years. Patients with early EAC (endoscopically treatable) would follow the same pattern as HGD above. Patients with later cancer needing surgery or palliative treatment would not have regular endoscopy afterward. Patients with advanced cancer may receive chemotherapy if they have metastatic disease or sometimes chemotherapy and radiotherapy if local disease but not fit for surgery. Supplementary Table 3 lists the unit costs, values, and sources of treatments for HGD, local EAC, and advanced EAC.

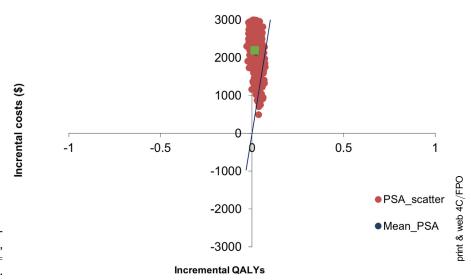
The final cost associated with HGD treatment and local EAC treatment states in the Markov model has been calculated as a weighted average, using information on the proportion of patients receiving each treatment (or a combination of treatments), retrieved from United Kingdom cancer registry data (UK Cancer data 2018-2020, https://www.cancerdata.nhs.uk/getdataout/data).

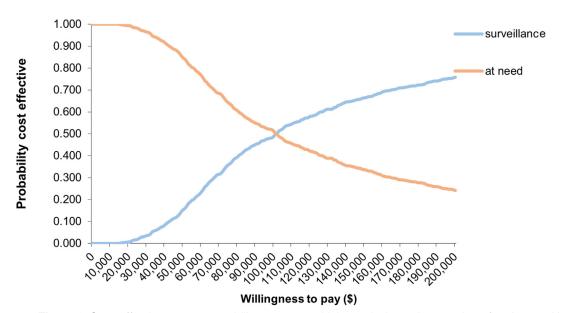




Supplementary Figure 2. Cost-effectiveness acceptability curve, base-case analysis.

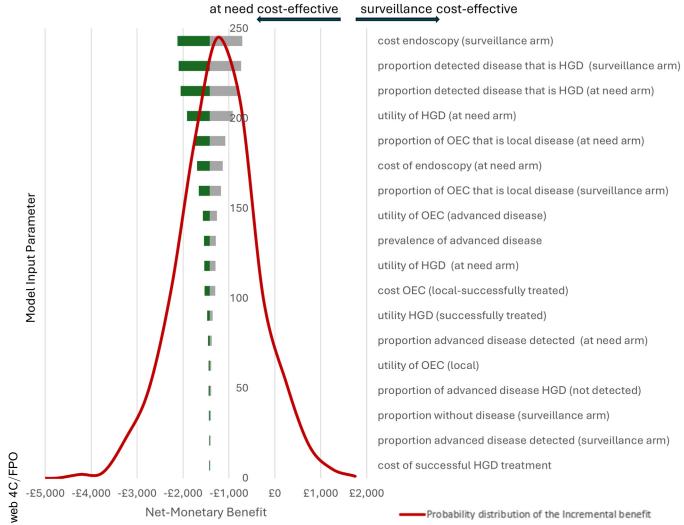
Gastroenterology Vol. ■, Iss. ■





Supplementary Figure 4. Cost-effectiveness acceptability curve, sensitivity analysis, and proportion of undetected HGD, $z_1 = 0.38$.

2025


Supplementary Figure 5. Costeffectiveness plane, sensitivity analysis, and proportion of undetected HGD, $z_1 = 0.54$. PSA, probabilistic sensitivity analysis.

Supplementary Figure 6. Cost-effectiveness acceptability curve, sensitivity analysis, and proportion of undetected HGD, $z_1 = 0.54$.

web 4C/FPO

9.e5 Deidda et al Gastroenterology Vol. ■, Iss. ■

Supplementary Figure 7. Tornado plot of variables contributing to the uncertainty in the model. The plot visually represents how changes in each variable influence cost-effectiveness in the model, with the bars in order of magnitude of their influence. OEC, (o)esophageal adenocarcinoma.

9.e6

Supplementary Table 1. Number of Patients Diagnosed With Metaplasia, Low-Grade Dysplasia, High-Grade Dysplasia, and Esophageal Adenocarcinoma

	Treatment arm	Control arm		
Disease stage	(Surveillance)	(At need)	Total	
Metaplasia	1212	650	1862	
LGD	114	48	162	
HGD	47	19	66	
EAC Total	40 1413	31 748	71 2161	

NOTE. The number of events was calculated considering the most severe diagnosis at first occurrence.

Supplementary Table 2. Rate of Detection of High-Grade Dysplasia and Esophageal Adenocarcinoma by Trial Arm

	Expected vs detected HGD + EAC		Prevalence of	Expected HGD+EAC	Parameters x and y	
	Patient recruited	Deaths	HGD+EAC, %	in 10 years, n	HGD+EAC detected, %	
Surveillance	1733	333	6.5	91	96	
At need	1719	356	6.5	88	57	
	Expected vs detec	ted HGD				
			Prevalence HGD, %)		
Surveillance	1733	333	3.5	49	96	
At need	1719	356	3.5	48	40	
			Prevalence EAC, %			
Surveillance	1733	333	3.0	42	96	
0 011 1 0111 0111 10 0						

ARTICLE IN PRESS

9.e7 Deidda et al

Gastroenterology Vol. ■, Iss. ■

Supplementary Table 3.Unit Costs Values and Sources of Treatments for High-Grade Dysplasia, Local Esophageal Adenocarcinoma, and Advanced Esophageal Adenocarcinoma

Treatment	Unit cost (\$)	Source and assumptions		
Chemotherapy	5348	NICE Guideline - Oesophago-gastric cancer: assessment and management in adults, https://www.nice.org.uk/guidance/ng83/evidence/appendix-i-pdf-170036297748. Table 5 (average of 4 available treatment). Assume 4 cycles/year.		
Radiotherapy	9012	Preparation for Complex Conformal Radiotherapy SC51Z £982 + Deliver a Fraction of Complex Treatment on a Megavoltage Machine SC23Z £212 (assume 23 number of fractions)		
Surgery	2583	Very complex, esophageal, stomach or duodenum procedure, 19 years and over (FZ80), weighted average, NHS reference costs		
Other palliative care	14,222	NHS reference costs, Endoscopic Insertion of Luminal Stent into Gastrointestinal Tract with CC Score $7+$ FE10A		
Endoscopy	1332.307692	NHS Reference Costs 2020–21 FE21Z Diagnostic Endoscopic Upper Gastrointestinal Tract Procedures with Biopsy, 19 years and over—Total		
HGD treatment	5746	National tariff workbook 22/23 code; FE21Z, FE02C, FE02C, FE22Z, 106		

NHS, National Health Service; NICE, National Institute for Health and Care Excellence.

Supplementary Table 4.Intermediate Outcomes, Trial, and Follow-up

	EAC cases in trial	Deaths with EAC in trial	Total EAC cases (trial + modeling and extra 10 years)	Deaths with EAC (trial + modeling and extra 10 years)	Life-years total	QALY total
Biennial	40	20	47	30	11.19	8.65
At need	31	15	49	43	11.17	8.63